

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND SCIENCE DEPARTMENT OF BIOLOGY EDUCATION Colombo 1 Street Yogyakarta 55281

Phone: (0274)565411 Ext. 217, (0274)565411(Administration Office),fax (0274)548203 Website: fmipa.uny.ac.id, E-mail :humas_fmipa@uny.ac.id

Bachelor of Science in Biology

MODULE HANDBOOK

Module name:	Laboratory Work in Animal Biosystematics					
Module level, if applicable:	Undergraduate					
Code:	BIM 6161					
Sub-heading, if applicable:	-					
Classes, if applicable:	-					
Semester:	Even					
Module coordinator:	Rizka Apriani Putri, M.Sc					
Lecturer(s):	Rizka Apriani Putri, M.Sc					
Language:	Bahasa Indonesia					
Classification within the	Elective Course					
curriculum:						
Teaching format / class	100 minutes lab work, 120 minutes structured activities, and					
hours per week during the	120 minutes individual study per week					
semester:	120 minutes individual study per week					
	Total workload is 91 hours per semester which consists of 100					
Workload:	minutes lab work, 120 minutes structured activities, and 120					
	minutes individual study per week for 16 weeks.					
Credit points:	1SKS (1 ECTS)					
	Invertebrate Biology, Lab. Work in Invertebrate Biology,					
Prerequisites course(s):	Vertebrate Biology, Lab Work in Vertebrate Biology					
Program Learning Outcomes	PLO 4. Comprehensively mastering Biology (core biology) to					
	solve problems in the field of Biology (problem-solving) and to					
	underlie the concepts of related sciences					
	PLO 5. Mastering the techniques and methodologies in					
	Biology as well as familiar with the equipment used in Biology					
	laboratories in order to get the knowledge of Biology (how we					

	L		attitudes , knolwedge, and	rubrics and manuals	0070			
Study / exam achievements:	1	C01 to C06	Object Observed	Technique Survey, test,	60%			
Study / exam achievements:	No	СО	Assessment	Assessment	Weight			
	The final mark will be weight as follow:							
Contont.	vertebrates, Numeric Phenetic analysis using UPGMA, standard Bioinformatics procedure using BLAST							
Content:	Biosystematics including : commonly used technical terms in animal biosystematics, OTUs sampling in invertebrates and							
	This course provides practical application in Animal							
	posters							
	CO 6. Publish analyzed data in form of papers, reports,							
	CO 5. Demonstrate the use of Bioinformatics in Animal biosystematics							
	make phenetics tree using UPGMA analysis							
	CO 4. Master the numeric phenetics analysis and be able to							
Course Outcomes	Systematics analysis							
	CO 3. Demonstrate ability to choose appropriate OTUs for							
	systematical analysis in invertebrates and vertebrates							
	CO 2. Explain type of characters that can be used in							
	biosystematics and taxonomy							
	CO 1. Understand the technical terms used in animal							
	After taking this course, the students have ability to:							
	speak in local, national, and international forums							
	PLO 11. Possessing scientific skills to support the ability to							
	professionalism							
	work	ers and optim	nizing the network	s in order to dev	velop			
	PLO	10. Having m	nanagerial ability t	o supervise and	l evaluate			
	entrepreneur in the field of Biology							
	PLO 9. Being able to work and create jobs/being an							
	laboratories and daily life							
	PLO 7. Being skillful in applying the techniques used in							
	concepts of Biology and other related fields							
	know what we know) PLO 6. Being adaptive, creative, innovative in applying the							

			skills					
	2	Review			40%			
		session						
		Total 100						
Forms of media:	Real objects, model and simulation, multimedia							
	A. Simpson, G.G. 1961, Principles of Animal Taxonomy, Oxford Book							
	Company, New Delhi							
	B. Richards, R.E., 2016, Biological Classification, A Philosophical							
	Introduction, Cambridge University Press, UK							
Reference:	C. J.E Winston, 1999, Describing Species : Practical Taxonomic							
	Procedure for Biologist, Columbia University Press, New York							
	D. Hickman, C. P. <i>et al.</i> ,2017, Integrative Principles of Zoology 17 th							
	Ed, McGraw Hill Education, New York							
	E. Wiens, J.J. (ed), 2000, Phylogenetic Analysis of Morphological							
	Data, Smithsonian Institution							

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11
CO1				✓		✓	√				✓
CO2				✓	✓	✓	√				✓
CO3				✓	✓	√	√			✓	✓
CO4				✓	✓	✓	√		✓		✓
CO5				✓	✓	✓	\checkmark		✓		✓
CO 6				✓	✓	✓	√		✓	✓	✓